Compact High-Performance Laser Gyro, Phase I

Completed Technology Project (2013 - 2013)

Project Introduction

The rotation sensitivity of a conventional optical Inertial Navigation System (INS)depends on the area enclosed by a circular optical path. Hence, it is impossible to significantly reduce the device size without sacrificing its sensitivity. Recent work showed that certain non-linear optical effects (fast light) can be used to increase the sensitivity of a ring laser gyro of a given size by orders of magnitude. We propose a portable high-performance all-fiber laser gyroscope. The device will utilize fast light produced by the Stimulated Brillouin Scattering in single-mode fibers. Fast light enhancement will enable reduction of the device size without decreasing its performance level. The fast light enhanced gyroscope will empower a rugged, compact, low-cost high-sensitivity INS ideal for precision guiding of UAVs, and other aircrafts.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
MagiQ Technologies,	Lead	Industry	Somerville,
Inc.	Organization		Massachusetts
• Armstrong Flight	Supporting	NASA	Edwards,
Research Center(AFRC)	Organization	Center	California

Compact High-Performance Laser Gyro, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions		
Images	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)	2	
Technology Areas		
Target Destinations		

Compact High-Performance Laser Gyro, Phase I

Completed Technology Project (2013 - 2013)

Primary U.S. Work Locations		
California	Massachusetts	

Project Transitions

May 2013: Project Start

November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138045)

Images

Briefing Chart

Compact High-Performance Laser Gyro, Phase I (https://techport.nasa.gov/imag e/136757)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

MagiQ Technologies, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Caleb A Christensen

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Compact High-Performance Laser Gyro, Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

- TX17 Guidance, Navigation, and Control (GN&C)
 - □ TX17.2 Navigation
 Technologies
 - ☐ TX17.2.3 Navigation Sensors

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

